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We analyze the long time behavior of an infinitely extended system of particles
in one dimension, evolving according to the Newton laws and interacting via a
non-negative superstable Kac potential fc(x)=cf(cx), c ¥ (0, 1]. We first prove
that the velocity of a particle grows at most linearly in time, with rate of order c.
We next study the motion of a fast particle interacting with a background of
slow particles, and we prove that its velocity remains almost unchanged for a
very long time (at least proportional to c−1 times the velocity itself ). Finally we
shortly discuss the so called ‘‘Vlasov limit,’’ when time and space are scaled by a
factor c.
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1. INTRODUCTION

The thermodynamic equilibrium structure of an infinitely extended particle
system interacting via Kac potentials has been largely studied in the litera-
ture. As well known, in a suitable limit, the phase diagram converges, for
any temperature, to the van der Waals phase diagram, comprehensive
of the Maxwell equal area rule. (1, 2) Among the most recent results we
mention ref. 3 and 4, where the existence of the liquid-vapor branch for
point particles in Rd, interacting via a potential with long but finite range,
has been rigorously proved. Furthermore, the stochastic time evolutions of
these systems, motivated by the analysis of non-equilibrium phenomena
like metastability and phase segregation, have been addressed by many
papers in the last decade, see e.g., ref. 5 and references therein.



In the present paper we investigate the dynamical behavior of infinitely
many particles in one dimension evolving according to the usual Newton
laws and interacting via a Kac potential (see later). We discuss two types of
results; firstly, some sharp estimates that remain valid for very long time;
secondly, the relation between the particle system and the Vlasov equation.
More precisely, in Section 2 we obtain a bound of the growth of the velocity
of a particle which remains significant for a long time. In Section 3 we con-
sider a fast particle interacting with a background of slow ones. We show
that the background cannot slow down rapidly the fast particle, which thus
almost preserves its velocity for a long time. Recently, problems similar to
those studied in Sections 2 and 3 have been investigated for a short range
interaction. (6) Here we prove that, as expected, the time involved is longer by
a factor c−1, where c ¥ (0, 1] is the inverse of the range of the Kac potential.
This is not a trivial change of scale, because the initial particle distribution
does not depend on c. Part of the proofs are similar to the ones in ref. 6, with
some improvements that will be outlined in the sequel. Here we only remark
the main difficulty of the new proof. In ref. 6 the presence of fast particles
was excluded by energy conservation, while in the present case the latter only
implies an upper bound on the number of fast particles. However we show
that this does not affect the asymptotic behavior of the motion. The estima-
tes depend on the dimension d and do not catch the right behavior for d > 1:
this is the reason for which we restricted our analysis to dimension d=1.
We finally discuss, in Section 4, the Vlasov limit, when space and time

are scaled by a factor c: by assuming convergence of the initial data, the
solution of the Newton system converges (in the local weak topology) to
the solution of the Vlasov equation. This statement is well known for
systems with finite total mass; in the present paper we extend the result to
the case of infinite total mass.

2. BOUNDS ON THE GROWTH OF THE VELOCITY OF A PARTICLE

We consider an infinite particle system in one dimension evolving
according to the Newton laws and interacting by means of a non-negative,
two-body Kac potential fc(x)=cf(cx), x ¥ R, c ¥ (0, 1]. The function f(x)
is symmetric, twice differentiable, strictly positive at the origin and short-
range: without loss of generality we assume

f(x)=0 if |x| \ 1 (2.1)

We point out that the potential is assumed non-negative for technical
reasons: the extension to a generic superstable potential requires different
arguments.

318 Buttà et al.



The state of the system is determined by the infinite sequence
X={xi, vi}i ¥N of positions and velocities of the particles. The state X is
assumed to have a locally finite density and energy. We define, for any
m ¥ R and R > 0,

Qc(X; m, R) q C
i
qi(m, R) 3

v2i
2
+
1
2

C
j: j ] i
fc(xi−xj)+14 (2.2)

where qi(m, R)=q(|xi−m| [ R) and q(A) denotes the characteristic func-
tion of the set A.
In order to consider configurations which are typical for the thermo-

dynamic states, we allow initial data with logarithmic divergences in the
velocities and local densities. More precisely, by defining

Qc(X) q sup
m

sup
R: R > log(e+|m|)

Qc(X; m, R)
2R

(2.3)

the set of all configurations for which Qc(X) <+. has a full measure
w.r.t. any Gibbs state associated to the potential fc. (7)

In fact the condition Qc(X) <+. does not depend on the scaling
parameter c ¥ (0, 1]. Indeed, since f(x) is non-negative and f(0) > 0, the
interaction fc(x) is superstable. (8) More precisely, there are constants
B1 > 0 and B2 \ 0 such that, for any c ¥ (0, 1] and for any finite configura-
tion of particles {x1,..., xn}, n ¥N,

C
i < j
fc(xi−xj) \ B1c C

k ¥ Z

n2k−B2cn (2.4)

where nk is the number of particles in the interval [kc−1, (k+1) c−1). By
using (2.4) we shall prove in the Appendix that there is a constant B3 \ 1
such that, for any c ¥ (0, 1] and for any particle configuration X,

c

B3
Q1(X) [ Qc(X) [ B3Q1(X) (2.5)

which implies in particular that Qc(X) <+. if and only if Q1(X) <+..
With this in mind we introduce the set X q {X: Q1(X) <+.}.
The time evolution tWX(t) is defined by the solutions of the Newton

equations:

ẍi(t)=C
j ¥N

j ] i

Fc(xi(t)−xj(t)), i ¥N (2.6)

where Fc(x)=−Nfc(x)=−c2 Nf(cx).
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The Cauchy problem for this system of infinite equations is well posed
when the initial condition is chosen in the set X, and the solution is con-
structed by means of the following limiting procedure.
Given X ¥X and n ¥N, let In q {i ¥N : xi ¥ B(0, n)}, where B(m, R) q

{y ¥ R : |y−m| [ R}. We define the n-partial dynamics tWX(n)(t)={x(n)i (t),
v (n)i (t)}i ¥ In as the solution of the differential system:

˛ ẍ (n)i (t)= C
j ¥ In
j ] i

Fc(x
(n)
i (t)−x

(n)
j (t))

x (n)i (0)=xi, v
(n)
i (0)=vi, i ¥ In

(2.7)

Notice that the set In is determined by the initial conditions X. Then (see
ref. 6 and references therein):

Theorem 2.1. For any X ¥X there exists a unique flow tWX(t)=
{xi(t), vi(t)}i ¥N ¥X satisfying (2.6) with initial data X(0)=X. Moreover,
for any t \ 0 and i ¥N,

lim
nQ+.

x (n)i (t)=xi(t), lim
nQ+.

v (n)i (t)=vi(t) (2.8)

Observe that, in order to simplify notation, we omit the explicit
dependence on c in X(t) and X (n)(t). We also remark that this dependence
is only due to the forces: the initial condition X ¥X is chosen indepen-
dently of this parameter.
We now state the main result of the present section.

Theorem 2.2. For any X ¥X there are two positive constants C1
and C2 such that for any c ¥ (0, 1] the following holds. Let tWX(t) be the
(unique) solution of (2.6) with initial data X(0)=X. Then, for any i ¥N
and t \ 0,

|vi(t)| [ C1 `log(e+|xi |+c−1)+C2ct (2.9)

Remarks. Here we are interested in the long time behavior of the
velocities. Indeed the bound (2.9) is not good for t and |xi | small, as follows
by observing that, from definitions (2.2) and (2.3),

|vi | [ 2`Q1(X) log(e+|xi |) -i ¥N (2.10)
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On the other hand, for t [ y=c−1 |log c|−1/2 and |xi | [ ac−1, a > 0,
the bound (2.9) implies that the maximal velocity of the ith particle is
bounded by a constant multiple of`log[e+(1+a) c−1], so that its maximal
displacement is bounded by a constant multiple of c−1. Therefore for any
r > 0 there is c(r) such that, during the time [0, y], the force acting on a
single particle initially located in B(0, rc−1) is bounded by c(r) c, and hence
|vi(t)| [ |vi |+c(r) ct for t [ y (which is an improvement of (2.9)).
We finally observe that the estimate (2.9) for c=1 improves the anal-

ogous one in ref. 6 where the dependence on the initial position of the par-
ticle was not explicitly determined.

To prove the theorem we first obtain a bound on the velocities of the
particles for the n-partial dynamics, which is the content of Proposition 2.3
below; we then get (2.9) from this bound by evaluating the difference
between the partial and the infinite dynamics.

Proposition 2.3. For any X ¥X there are two positive constants
C3 and C4 such that for any c ¥ (0, 1] and n ¥N the following holds. Let
tWX (n)(t) be the solution of (2.7). Then, for any i ¥ In and t \ 0,

|v (n)i (t)| [ C3 `log(e+n)+C4ct (2.11)

Remark. The proof of the proposition is completely different from
the one in ref. 6 for the analogous statement with c=1. The argument used
in ref. 6, which is based on energy estimates, is not sufficient to get the
correct dependence on c as in (2.11). We thus need a deeper analysis of the
motion. More precisely, we notice that the force acting on a fast particle
can be written as the sum of its interaction with the slow particles and with
the other equally fast particles. The first contribution is small because the
time of collision is very short. The second contribution is controlled by
using the conservation of energy, which implies an upper bound on the
total number of fast particles at each time. An extra argument is finally
required to control the re-collisions. As a result we are able to prove that
fast particles should be necessarily present also at time zero, and this is
excluded by our assumptions on the distribution of the initial data.

Proof of Proposition 2.3. We define

Vn(t) qmax
i ¥ In

sup
s ¥ [0, t]

|v (n)i (s)| (2.12)

and, for C3, C4 > 0 to be fixed later,

Un(t) q C3 `log(e+n)+C4ct (2.13)
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Let

Tn q sup{t \ 0 : Vn(s) [ Un(s) -s ¥ [0, t]} (2.14)

setting Tn=0 if the above set is empty (i.e., when Vn(t) > Un(t) for all
t \ 0). The proposition is proved if we show that, for C3 and C4 sufficiently
large, Tn=+. for all n ¥N and c ¥ (0, 1].
We first assume C3 \ 4`Q1(X) so that, by (2.10), Vn(0) [ Un(0)/2.

By continuity, this implies Tn > 0 for all n ¥N. We next proceed by con-
tradiction. We fix n ¥N and assume 0 < Tn <+., which implies Vn(Tn)=
Un(Tn). Since Vn(0) < 3Un(0)/4, there exists i ¥ In such that |v

(n)
i (t1)|=

3Un(Tn)/4 for some t1 ¥ (0, Tn). Setting

t0 q inf 3 t ¥ [0, t1] : : |v (n)i (t)|−
3Un(Tn)
4
: [ Un(Tn)

5
4

and observing |v (n)i (t0)| > Un(0)/2 \ Vn(0), we get an absurd if we show that
t0=0.
Clearly t0 < t1 and, from (2.1), (2.7), and the definition of Fc,

: |v (n)i (t0)|−
3Un(Tn)
4
: [ ||Nf||. c2 F

t1

t0

ds C
j ¥ In
j ] i

q (n)i, j (s) (2.15)

where q (n)i, j (s) q q(|x
(n)
i (s)−x

(n)
j (s)| [ c

−1), i.e., the characteristic function of
the set {s ¥ [t0, t1] : |x

(n)
i (s)−x

(n)
j (s)| [ c

−1}. We look for an upper bound
to the right hand side of (2.15): if we show it can be done smaller than, e.g.,
Un(Tn)/10, then t0=0. We decompose

{s ¥ [t0, t1] : |x
(n)
i (s)−x

(n)
j (s)| [ c

−1}=D+i, j 2 D−i, j

with

D+i, j q 3 s ¥ [t0, t1] : |v (n)j (s)| >
Un(Tn)
2
, |x (n)i (s)−x

(n)
j (s)| [ c

−14

D−i, j q 3 s ¥ [t0, t1] : |v (n)j (s)| [
Un(Tn)
2
, |x (n)i (s)−x

(n)
j (s)| [ c

−14

so that q (n)i, j (s)=q(D
+
i, j)(s)+q(D

−
i, j)(s). We note that

|v (n)i (s)|− |v
(n)
j (s)| \

Un(Tn)
20

-s ¥ D−i, j
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and, since |v (n)j (s)| [ Un(Tn) for any s ¥ [0, Tn],

||v (n)i (s)|− |v (n)j (s)|| [
9Un(Tn)
20

-s ¥ D+i, j

Then, setting ti, j=sup{s: s ¥ D
−
i, j}, the previous bounds imply that

|x (n)i (ti, j)−x
(n)
j (ti, j)| \

Un(Tn)
20

|D−i, j |−
9Un(Tn)
20

|D+i, j |

But |x (n)i (ti, j)−x
(n)
j (ti, j)| [ c

−1, so that

|D−i, j | [
20c−1

Un(Tn)
+9 |D+i, j |

It follows that there is a decomposition D−i, j=D
g
i, j 2 D†i, j with

Dg
i, j 5 D†i, j=”, |Dg

i, j | [
20c−1

Un(Tn)
, |D†i, j | [ 9 |D

+
i, j |

Then q(D−i, j)(s)=q(D
g
i, j)(s)+q(D

†
i, j)(s) and therefore:

F
t1

t0

ds q (n)i, j (s) [ F
t1

t0

ds q(Dg
i, j)(s)+10 |D

+
i, j |

=F
t1

t0

ds[q(Dg
i, j)(s)+10q(D

+
i, j)(s)] (2.16)

From (2.15) and (2.16) we obtain the following estimate:

: |v (n)i (t0)|−
3Un(Tn)
4
: [ ||Nf||. c2(A1+A2) (2.17)

with

A1=F
t1

t0

ds C
j ¥ In
j ] i

q(Dg
i, j)(s) [

20c−1

Un(Tn)
N̄n (2.18)

where N̄n denotes the number of particles which can interact with the ith
particle during the time [0, Tn], and

A2=10 F
t1

t0

ds C
j ¥ In
j ] i

q(D+i, j)(s) [ 10Tn sup
s ¥ [0, Tn]

N>n (s) (2.19)
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where N>n (s) denotes the number of particles of X
(n)(s) which are con-

tained in B(x(n)i (s), c
−1) and whose velocity is bigger than Un(Tn)/2.

Now we have to bound the quantities N̄n and N
>
n (s). For the latter we

shall need the following lemma, whose proof is given in Appendix A.

Lemma 2.4. For any X ¥X there is C5 > 0 such that, for any
c ¥ (0, 1], n ¥N, and t \ 0,

sup
m

Qc(X(n)(t); m, Rn(t)) [ C5Rn(t) (2.20)

where

Rn(t) q log(e+n)+2c−1+F
t

0
ds Vn(s) (2.21)

and Vn( · ) is defined in (2.12).
We observe that the i th particle can interact, during the time [0, Tn],

only with particles which are initially in B(xi, 2Rn(Tn)). Then, denoting by
N(X; m, R) the number of particles of X which are in B(m, R), and recall-
ing the definition (2.3), we have:

N̄n [N(X; xi, 2Rn(Tn)) [ 4Q1(X) Rn(Tn)

[ 4Q1(X)[log(e+n)+2c−1+Un(Tn) Tn] (2.22)

From (2.20) and recalling the definition (2.2), we have, for all s \ 0,

Un(Tn)2

4
N>n (s) [ Qc(X

(n)(s); x (n)i (s), c
−1)

[ sup
m

Qc(X(n)(s); m, Rn(s)) [ C5Rn(s)

so that

sup
s ¥ [0, Tn]

N>n (s) [ 4C5
log(e+n)+2c−1+Un(Tn) Tn

Un(Tn)2
(2.23)

From (2.18), (2.22), by using the definition (2.13) of Un( · ), and
neglecting some positive terms, it follows that

A1 [ 80Q1(X)1
3
C23
+
1
C4
2 c−2Un(Tn) (2.24)
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Analogously, from (2.19) and (2.23),

A2 [
40C5
C4
1 3
C23
+
1
C4
2 c−2Un(Tn) (2.25)

From (2.17), (2.24), and (2.25), by choosing C3 and C4 large enough
we obtain ||v (n)i (t0)|−3Un(Tn)/4| [ Un(Tn)/10, hence t0=0 and the propo-
sition is proved. L

Proof of Theorem 2.2. Let

di(n, t) q |x
(n)
i (t)−x

(n−1)
i (t)|+|v (n)i (t)−v

(n−1)
i (t)| (2.26)

From the equations of motion in integral form we have:

˛v (n)i (t)=vi+F
t

0
ds C
j ¥ In
j ] i

Fc(x
(n)
i (s)−x

(n)
j (s))

x (n)i (t)=xi+vit+F
t

0
ds (t−s) C

j ¥ In
j ] i

Fc(x
(n)
i (s)−x

(n)
j (s))

(2.27)

By (2.11) each particle i ¥ In may interact, during the time [0, t], only with
the particles initially contained in B(xi, pn(t)), where

pn(t) q 2c−1+2[C3 `log(e+n)+C4ct] t (2.28)

Therefore, by definitions (2.2) and (2.3), for any s ¥ [0, t],

N(X(n)(s); x (n)i (s), c
−1) [N(X; xi, pn(t)) [ Q1(X; xi, pn(t))

[ 2Q1(X)[log(e+n)+pn(t)] (2.29)

Now fix k ¥N and define

n(k) qmin{m ¥N : n > 1+k+pn(t) -n \ m} (2.30)

For n \ n(k) each particle i ¥ Ik cannot interact (during the time [0, t])
with the particles j ¥ In 0In−1. Then, from (2.26) and (2.27), for any i ¥ Ik
and n \ n(k), we have that

di(n, t) [ ||Df||. c3(1+t) F
t

0
ds C

j

g (di(n, s)+dj(n, s))
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where ;g
j means the sum restricted to all the particles j ¥ In−1 closer than

c−1 to x (n)i (s) or x
(n−1)
i (s). The number of these particles is bounded in

(2.29). Hence, defining

uk(n, t) q sup
i ¥ Ik

di(n, t) (2.31)

we get

uk(n, t) [ gn(t) F
t

0
ds uk1 (n, s) (2.32)

where k1=Int[k+pn(t)]+1 (Int[ · ] denotes the integer part of · ) and

gn(t) q 2 ||Df||. c3(1+t) Q1(X)[log(e+n)+pn(t)] (2.33)

Setting kq=Int[kq−1+pn(t)]+1, q ¥N, and k0=k, we can iterate the
inequality (2.32) a times, with

a=Int 5n−k−1
1+pn(t)
6 (2.34)

(which ensures n > n(ka−1)). Since uk(n, t) [ an(t) with

an(t) q 2(1+t)[C3 `log(e+n)+C4ct] (2.35)

we finally obtain the bound:

uk(n, t) [ an(t)
[gn(t) t]a

a!
(2.36)

We can now prove (2.9). We choose k=Int[|xi |]+1 and we consider
the ng-dynamics, where

ng=Int[a(k2+c−2) ect] (2.37)

with a > 1 to be fixed later. From (2.11) and (2.37) v (n
g)
i (t) satisfies a bound

like (2.9) with suitable positive constants Cg
1 and C

g
2 . On the other hand,

by (2.31),

|vi(t)−v
(ng)
i (t)| [ C

n \ ng
uk(n, t) (2.38)

From definitions (2.30) and (2.37) it is easy to check that there exists a0
such that if a \ a0 then ng \ n(k) for all k \ 1, c ¥ (0, 1], and t \ 0. We can
then use (2.36) to bound each term in the sum on the right hand side of

326 Buttà et al.



(2.38). Moreover, from (2.37) and recalling definitions (2.28), (2.33), (2.34),
and (2.35), there is C6 > 1 such that, for any a \ a0 and n \ ng, the follow-
ing bounds hold:

t [ c−1 log(e+n), pn(t) [ C6c−1 log2(e+n),

gn(t) [ C6c log3(e+n), an(t) [ C6c−1 log2(e+n),

a \
c(n−k−1)
2C6 log2(e+n)

(2.39)

Inserting the bounds above in (2.36) and using Stirling formula we get:

uk(n, t) [ C6c−1 exp 5− a log
c(n−k−1)

2eC26 log
8(e+n)
6 (2.40)

Since ng \ a(k2+c−2), there is a1 \ a0 such that the log in the square
brackets on the right hand side of (2.40) is not smaller than 1 for all k ¥N,
a \ a1, and n \ ng. Hence, from (2.38), the last bound in (2.39), and (2.40)
we obtain, for all a \ a1,

|vi(t)−v
(ng)
i (t)| [ C6c

−1 C
n \ a(k2+c −2)

exp 5− c(n−k−1)
2C6 log2(e+n)

6

By choosing a large enough, the right hand side is bounded uniformly in
k ¥N and c ¥ (0, 1]. The theorem is proved. L

3. INTERACTION OF A FAST PARTICLE WITH A BACKGROUND

OF SLOW PARTICLES

In this section we study a system composed by a tagged particle of
position and velocity (x̂, v̂) and mass M coupled with an infinite particle
system like the one discussed in the previous section. The tagged particle
interacts with the other particles via a Kac potential f̂c(x)=cf̂(cx), x ¥ R,
c ¥ (0, 1]. The function f̂(x) is symmetric, twice differentiable, and short-
range: without loss of generality we assume f̂(x)=0 if |x| \ 1. Setting
F̂c(x)=−c2 Nf̂(cx), the equations of motion are:

˛ ẍ̂(t)=M
−1 C
j ¥N

F̂c(x̂(t)−xj(t)),

ẍi(t)=C
j ¥N
j ] i

Fc(xi(t)−xj(t))+F̂c(xi(t)− x̂(t)), i ¥N,

x̂(0)=x̂0, v̂(0)=v̂0, X(0)=X

(3.1)
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Without loss of generality we assume x̂0=0 and v̂0 \ 0. For X ¥X the
existence and uniqueness of the solutions for the Cauchy problem (3.1) is a
trivial generalization of Theorem 2.1. The main result of the present section
is the following theorem.

Theorem 3.1. For any X ¥X there are three positive constants Cg,
Ĉ, and C̄ such that, for any c ¥ (0, 1] and v̂0 \ Cg

`log(e+c−1),

|v̂(t)− v̂0 | [ C̄ -t ¥ [0, Ĉc−1v̂0] (3.2)

Proof. We shall prove the theorem by showing an analogous result
for the n-partial dynamics which is uniform in n. Let (x̂ (n), v̂ (n)) be the posi-
tion and velocity of the tagged particle w.r.t. the n-partial dynamics. From
now on we assume v̂0 \ Cg

`log(e+c−1), with Cg a positive constant to be
fixed independently of n. Let

V̂n(t) qmax
i ¥ In
G( inf
s ¥ [0, t]

|x (n)i (s)|−2v̂0t− c
−1) sup

s ¥ [0, t]
|v (n)i (s)| (3.3)

where G ¥ C(R) is not increasing and satisfying: G(x)=1 for x [ 0,
G(x)=0 for x \ 1. We next define

T̂n q sup 3 t \ 0 : V̂n(t) [
v̂0
2
, sup
s ¥ [0, t]

|v̂ (n)(s)− v̂0 | [
v̂0
10
4 (3.4)

setting T̂n=0 if the above set is empty. Observe that for any t ¥ [0, T̂n] the
ith particle can interact with the tagged one during the time [0, t] only if
i ¥ An(t), where

An(t) q {i ¥ In : inf
s ¥ [0, t]

|x (n)i (s)| [ 2v̂0t+c
−1}

Observe also that V̂n( · ) is a continuous and non decreasing function such
that

max
i ¥ An(t)

sup
s ¥ [0, t]

|v (n)i (s)| [ V̂n(t) [ max
i ¥ Ān(t)

sup
s ¥ [0, t]

|v (n)i (s)| (3.5)

where

Ān(t) q {i ¥ In : inf
s ¥ [0, t]

|x (n)i (s)| [ 2v̂0t+c
−1+1}
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We finally define

T̂ q inf
n ¥N
T̂n, Tg qmin{T̂; Ĉc−1v̂0} (3.6)

with Ĉ a positive constant to be fixed later. By continuity, Eq. (2.10) and
the existence of the infinite dynamics imply that if Cg > 4`Q1(X) then
T̂ > 0. We shall prove that there are Cg large enough and Ĉ small enough
such that, for all n ¥N,

V̂n(Tg) [
v̂0
4
, sup

t ¥ [0, Tg]
|v̂ (n)(t)− v̂0 | [

v̂0
20

(3.7)

By continuity, Eq. (3.7) implies that T̂ > Ĉc−1v̂0. Moreover, we will show
that |v̂ (n)(t)− v̂0 | is actually bounded by a constant for t ¥ [0, Ĉc−1v̂0],
which is the statement of the theorem.
In Appendix A the Lemma 2.4 is generalized to the n-partial dynamics

tW (x̂ (n)(t), X (n)(t)) by proving that

sup
m

Qc(X (n)(t); m, Rn(t)) [ C7Rn(t) -t ¥ [0, T̂n) (3.8)

with C7 not depending on v̂0. Then, by proceeding as in Section 2, we can
show that, for any i ¥ In,

|v (n)i (t)| [ C8 `log(e+n)+C9ct -t ¥ [0, T̂n) (3.9)

with C8 and C9 not depending on v̂0. Following the same steps of the proof
of Theorem 2.2 and substituting the definition (2.26) by

di(n, t) q |x
(n)
i (t)−x

(n−1)
i (t)|+|v (n)i (t)−v

(n−1)
i (t)|

+|x̂ (n)(t)− x̂ (n−1)(t)|+|v̂ (n)(t)− v̂ (n−1)(t)|

from (3.9) we can prove that the infinite dynamics differs from the partial
dynamics by a negligible quantity for t ¥ [0, T̂). More precisely, there are
positive constants C10 and C11, not depending on v̂0, such that, for any
i ¥N, n \ |xi |, and c ¥ (0, 1],

|v (n)i (t)| [ C10 `log(e+|xi |+c
−1v̂0)+C11ct -t ¥ [0, T̂) (3.10)

Recalling the definition (3.6), from (3.10) we get

sup
t ¥ [0, Tg]

|v (n)i (t)| [ C10 `log(e+|xi |+c
−1v̂0)+C11Ĉv̂0
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Hence, if 5C11Ĉ < 1 and Cg is large enough, all the particles i ¥ Ān(Tg) are
initially in B(0, 4Ĉc−1v̂20), and moreover their velocity is smaller than v̂0/4
during the time [0, Tg]. By the second inequality in (3.5), this proves the
first bound in (3.7).
We are left with the proof of the second bound in (3.7). We shall use

the same strategy of ref. 6. The key point is the existence, up to the time T̂,
of a gap between the velocity of the tagged particle and the velocities of the
other particles: this allows to study the problem by means of a first order
perturbation theory.
Let n0=Int[Ĉv̂

2
0c
−2 exp(Ĉv̂20)]; by arguing as in the proof of Theorem

2.2 we can prove that if Cg is large enough then

sup
t ¥ [0, Tg]

|v̂ (n)(t)− v̂ (n0)(t)| [ C12 -n > n0 (3.11)

with C12 not depending on v̂0. Let us consider the case n [ n0. From here
to the end of the section we use the shortened notation (x̂(t), X(t)) for
(x̂ (n)(t), X (n)(t)). For t ¥ [0, Tg] we define

p̂(t) q v̂(t)+C
i

f̂c(x̂(t)−xi(t))
M(v̂(t)−vi(t))

(3.12)

From the equations of motion we have:

ṗ̂(t)=C
i

f̂c(x̂(t)−xi(t))
M(v̂(t)−vi(t))2

5F̂c(xi(t)− x̂(t))+ C
j: j ] i
Fc(xi(t)−xj(t))6

−C
i, j

f̂c(x̂(t)−xi(t))
M2(v̂(t)−vi(t))2

F̂c(x̂(t)−xj(t)) (3.13)

Recalling the definition of An(t), for t ¥ [0, Tg] a particle can contribute in
the sums on the right hand side of (3.13) only if it belongs to An(Tg). Since
Tg [ T̂, by the first inequality in (3.5), if i ¥ An(Tg) then |v̂(t)−vi(t)| >
2v̂0/5, so that

| ṗ̂(t)| [
C13c3

v̂20
N2(t)

where N(t) qN(X(t); x̂(t), 2c−1). Hence:

sup
t ¥ [0, Tg]

| p̂(t)− p̂(0)| [
C13c3

v̂20
F
Tg

0
ds N2(s) (3.14)
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By (2.4) there is a constant B4 > 0 such that

N(X; m, R)2 [ B4c−1 max{1; cR} Qc(X; m, R)

Then, recalling Rn(t) > 2c−1, by (3.8),

N2(t) [ 2B4c−1Qc(X(t); x̂(t), 2c−1)

[ 2B4c−1C7Rn(t) [ C14Ĉc−2v̂
2
0 (3.15)

where we used that Rn(t) [ C15Ĉc−1v̂
2
0 when t ¥ [0, T

g] and n [ n0.
Moreover, during the time [0, Tg], the tagged particle can interact

with another one for a time not bigger than 5(cv̂0)−1/2, and we know that
the particles in An(Tg) are initially in B(0, 4Ĉc−1v̂20). Then:

F
Tg

0
ds N(s) [

5(cv̂0)−1

2
N(X; 0, 4Ĉc−1v̂20) [ C16Ĉc

−2v̂0 (3.16)

By (3.15) and (3.16),

F
Tg

0
ds N2(s) [ sup

t ¥ [0, Tg]
N(t) F

Tg

0
ds N(s) [ C17Ĉ3/2c−3v̂

2
0

so that, from (3.14),

sup
t ¥ [0, Tg]

| p̂(t)− p̂(0)| [ C18Ĉ3/2

Then, for t ¥ [0, Tg],

|v̂(t)− v̂0 | [ C18Ĉ3/2+|p̂(t)− v̂(t)|+|p̂(0)− v̂0 | (3.17)

By definition (3.12) and (3.15), the last two terms on the right hand side
of (3.17) are bounded by C19 `Ĉ. By (3.11) and (3.17) the difference
|v̂ (n)(t)− v̂0 | is thus bounded by a constant for t ¥ [0, Tg] and n ¥N. In
particular, if Cg is large enough, also the second bound in (3.7) is true. L

4. ON THE VLASOV LIMIT

We consider the system (2.6) after rescaling of space and time by a
factor c, i.e.,

ẍi(t)=c C
j ¥N
j ] i

F(xi(t)−xj(t)), i ¥N (4.1)
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where F=−Nf and f as in Section 2. Equations (4.1) can also be inter-
preted as the equations of motion of a system of particles of mass c and
force c2F. Assume that the initial data are chosen in such a way that, in the
limit cQ 0, the particles are distributed with a mass density f0(x, v) in the
one particle phase space (x, v). If at later times the system can still be
described by a mass density f(x, v; t), then the latter should be a solution
(at least formally) of the Vlasov equation, which reads (in one dimension):

(“t+v “x+E(x; t) “v) f(x, v; t)=0 x, v ¥ R (4.2)

where

E(x; t)=F dxŒ dvŒ f(xŒ, vŒ; t) F(x−xŒ) (4.3)

and

f(x, v; 0)=f0(x, v) (4.4)

This equation, introduced by Vlasov many years ago to study the
plasma physics, (9) describes the evolution of a system of many particles in
the mean field limit. It is useful to introduce a weak version of the previous
equation by using the characteristics. Problem (4.2)–(4.4) reduces to find a
pair of functions,

(x, v)W (X(x, v; t), V(x, v; t)), (x, v)W f(x, v; t) (4.5)

that satisfy the following evolution equations:

Ẋ(x, v; t)=V(x, v; t) (4.6)

V̇(x, v; t)=E(X(x, v; t); t) (4.7)

X(x, v; 0)=x, V(x, v; 0)=v (4.8)

f(X(x, v; t), V(x, v; t); t)=f0(x, v) (4.9)

We assume that the initial distribution f0(x, v) is measurable and
satisfies, for some l1, l2 > 0,

0 [ f0(x, v) [ l1e−l2v
2

(4.10)

We notice that this time evolution is ‘‘Hamiltonian’’ and preserves the
measure dx dv, so that the Jacobian |J(X, V | x, v)| is equal to one.
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The existence and uniqueness of solutions for these equations have
been proved in many papers. For finite total mass, i.e.,

F dx dv f(x, v; t) <.

the first result in one dimension was obtained in ref. 10; since then, many
other papers studied the problem in higher dimension and for a large class
of interactions (see, for instance, ref. 11). For infinite total mass the
problem has been recently solved in three (or lower) dimensions for posi-
tive and bounded interactions, (12) and in two dimensions for singular
Coulomb-like interactions. (13)

A natural problem arises from the Hamiltonian nature of the Vlasov
equation: does a particle system well approximating this equation exist? In
the case of finite total mass the answer is positive and it has been given
many years ago, see refs. 11, 14, and 15. Here we shortly discuss the case of
unbounded total mass, by considering the one dimensional case of system
(4.1), but we believe that the same considerations may apply whenever the
solution of the Vlasov equation exists (and it is continuous with respect to
the initial data).
We first observe that the initial data discussed in Sections 2 and 3 arise

in a natural way in problems of statistical mechanics, while in the framework
of the Vlasov equation we have to consider initial data satisfying (4.10).
The main assumption is that initially the particle system ‘‘well approx-

imates’’ (as cQ 0) the initial data of the Vlasov equation. There are slightly
different ways to approximate an unbounded Vlasov equation by an infi-
nite particle system. We consider one of such ways without entering into
the topic of possible generalizations.
LetM be the space of Radon measures in R2; we introduce the ‘‘local

bounded Lipschitz distance’’ r onM defined by

r(m, n) q sup
t0 ¥ R

2
sup
j ¥ D

: F
B(t0)
m(dt) j(t)−F

B(t0)
n(dt) j(t) : (4.11)

where B(t0) denotes the unit ball centered in t0 and

D={j: R2Q [0, 1] : |j(t)−j(tŒ)| [ |t−tŒ| -t, tŒ ¥ R2}

Finally, for tW {xi(t), vi(t)}i ¥N being a solution of Eqs. (4.1), we
define the empirical measure tW w (c)t ¥M by setting (dt=dx dv below)

w (c)t (dt) q c C
i ¥N

dxi(t)(dx) dvi(t)(dv) (4.12)
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Then:

Theorem 4.1. We consider an initial condition for the Vlasov
equation f0(x, v) satisfying (4.10), and an infinite particle system evolving
via the Newton laws (4.1) with initial data such that

lim
cQ 0
r(w (c)0 , m0)=0 (4.13)

where m0(dx dv) q f0(x, v) dx dv. Then, for any T > 0,

lim
cQ 0

sup
t ¥ [0, T]

r(w (c)t , mt)=0 (4.14)

where mt(dx dv) q f(x, v; t) dx dv.

Proof. The proof is achieved in three steps.

Step 1. Fix two quantities N and L(N), a point t0=(x0, v0), and
consider an approximate problem in which the initial condition of the
Vlasov equation is 0 if |x−x0 | > N and |v| > L(N), and f0(x, v) otherwise.
It can be shown that, for N sufficiently large, there is a choice of L(N) for
which the solution of the infinite Vlasov equation can be approximated, in
the ball B(t0), by the solution of this finite mass equation with an error
g1(N), independent of t0 and vanishing as NQ.. This property is equiv-
alent to the existence of the solution of the Vlasov equation with infinite
mass, discussed in detail in ref. 12 in the more difficult three dimensional
case. Here the proof is very simple since the boundedness of the force field
implies the boundedness of the displacement of each fluid particle, so
that an iterative procedure similar to the one of Section 2 can be easily
constructed.

Step 2. We compare the solution of the finite mass Vlasov equation
with the solution of a particle system evolving via a n-partial dynamics
(relative to Eqs. (4.1)) with n=Int[N]; the latter is obtained by consid-
ering only the particles which are initially contained in the ball of radius n
and center x0, and whose initial velocity is not bigger than L(N). We are
now in the hypothesis discussed in the literature, (11, 14, 15) and the error can
be shown to be smaller than a quantity g2(c, N), not depending on t0 and
vanishing as cQ 0 for any N> 0.

Step 3. It remains to prove that the n-partial dynamics (relative
to Eqs. (4.1)) converges in B(t0) to the infinite dynamics, uniformly in c
(and t0), as nQ.. This uniformity can be seen by writing explicitly the
converging procedure. We omit the details of the proof.
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The rapidity of convergence, the case of more dimension and/or more
general interactions are out of the purposes of the present section. We
finally remark that it would be reasonable to obtain results analogous to
those of Sections 2 and 3 directly for the Vlasov equation.

APPENDIX A

Warning. In the sequel we shall denote by C a generic positive con-
stant whose numerical value may change from line to line.

Proof of Eq. (2.5). Let Nk(X), k ¥ Z, be the number of particles of
the configuration X which are located in the interval [k, k+1). Since
fc(x)=cf(cx), from (2.1) it follows that, for any m ¥ R and R > 1,

C
i < j
qi(m, R) fc(xi−xj) [ Cc C

Ok, kŒP
Nk(X) NkŒ(X)

where Ok, kŒP means that the sum is restricted to all the pairs k, kŒ ¥ Z for
which |k−m| [ R+1 and |kŒ−k| [ c−1+1. Then, since Nk(X) NkŒ(X) [
Nk(X)2+NkŒ(X)2,

C
i < j
qi(m, R) fc(xi−xj)

[ C C
k ¥ Z

q(|k−m| [ R+1) Nk(X)2

+Cmin{1; cR} C
kŒ ¥ Z

q(|kŒ−m| [ R+c−1+2) NkŒ(X)2 (A.1)

Recalling the definition (2.2), from (2.4) with c=1 and (A.1),

Qc(X; m, R) [ C[Q1(X; m, R+1)+min{1; cR} Q1(X; m, R+c−1+2)]

which implies the second bound in (2.5). Analogously, from (A.1) with
c=1 and (2.4),

Q1(X; m, R) [ Cc−1[Qc(X; m, R+1)+Qc(X; m, R+3)]

which implies the first bound in (2.5). L

Proof of Lemma 2.4 and Eq. (3.8). We shall prove (3.8); the proof
of (2.20) is recovered by putting f̂=0, in which case we can assume
T̂n=+.. We introduce a mollified version of Qc(X; m, R) by defining

Wc(X; m, R) q C
i
fm, Ri 3

v2i
2
+
1
2

C
j: j ] i
fc(xi−xj)+14 (A.2)

Long Time Behavior for Kac Particle Systems 335



where

fm, Ri =f 1
|xi−m|
R
2 (A.3)

and f ¥ C.(R+) is not increasing and satisfies: f(x)=1 for x ¥ [0, 1],
f(x)=0 for x \ 2, and |fŒ(x)| [ 2. Clearly:

Qc(X; m, R) [Wc(X; m, R) [ Qc(X; m, 2R) (A.4)

For 0 [ s [ t < T̂n, we define

Rn(t, s) q log(e+n)+2c−1+F
t

0
dy Vn(y)+F

t

s
dy Vn(y) (A.5)

(note that Rn(t, t)=Rn(t) and Rn(t, 0) [ 2Rn(t)) and compute

“sWc(X(n)(s); m, Rn(t, s))=C
i
[oi(t, s) Ei(s)+f

m, Rn(t, s)
i Ėi(s)] (A.6)

where, denoting by x̂mi (s) the sign of xi(s)−m,

oi(t, s)=fŒ 1
|xi(s)−m|
Rn(t, s)
25x̂mi (s) vi(s)
Rn(t, s)

−
“sRn(t, s)
Rn(t, s)2

|xi(s)−m|6 ,

Ei(s)=
v2i (s)
2
+
1
2

C
j: j ] i
fc(xi(s)−xj(s))+1

and, to simplify notation, we have omitted the explicit dependence on n of
xi, vi, oi, and Ei.
Since fŒ(|y|) [ 0, fŒ(|y|)=0 if |y| [ 1, “sRn(t, s)=−Vn(s), and |vi(s)| [

Vn(s), then oi(t, s) [ 0. On the other hand, from the equations of motion,

Ėi(s)=vi(s) F̂c(xi(s)− x̂(s))+ C
j: j ] i

vi(s)+vj(s)
2

Fc(xi(s)−xj(s))

Then, by (A.6) and using Fc( · ) is odd,

“sWc(X (n)(s); m, Rn(t, s))

[C
i
fm, Rn(t, s)i F̂c(xi(s)− x̂(s)) vi(s)

+12 C
i ] j
(fm, Rn(t, s)i −fm, Rn(t, s)j ) Fc(xi(s)−xj(s)) vi(s) (A.7)
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By the inequality

|fm, Ri −f
m, R
j | [ 2

|xi−xj |
R

[qi(m, 2R)+qj(m, 2R)]

and since Rn(t, s) > c−1, the modulus of the double sum in the right hand
side of (A.7) can be bounded from above by

−2 ||Nf||. c
“sRn(t, s)
Rn(t, s)

C
i ] j
qi(m, 4Rn(t, s)) qj(m, 4Rn(t, s)) qi, j(s) (A.8)

where we shortened qi, j(s)=q(|xi(s)−xj(s)| [ c−1). From (2.4) and
arguing as in the proof of Eq. (2.15) in ref. 16, the double sum in the right
hand side of (A.8) can be bounded by Cc−1Wc(X(n)(s); m, 4Rn(t, s)); more-
over, setting

Wc(X; R) q sup
m

Wc(X; m, R) (A.9)

it can be proved that

Wc(X; m, 2R) [ CWc(X; R) (A.10)

(see, e.g., ref. 16), and hence, by (A.7),

“sWc(X(n)(s); m, Rn(t, s))

[C
i
fm, Rn(t, s)i |F̂c(xi(s)− x̂(s)) vi(s)|−C

“sRn(t, s)
Rn(t, s)

Wc(X (n)(s); Rn(t, s))

from which, by integrating and taking the supremum on m,

Wc(X (n)(s); Rn(t, s))

[Wc(X(n)(0); Rn(t, 0))+sup
m

F
s

0
dy C

i
fm, Rn(t, y)i |F̂c(xi(y)− x̂(y)) vi(y)|

−C F
s

0
dy
“sRn(t, y)
Rn(t, y)

Wc(X(n)(y); Rn(t, y)) (A.11)

In the sum on the right hand side of (A.11), only the particles which are
initially in B(m, 4Rn(t, 0)) can contribute; the number of these particles is
bounded by Wc(X (n)(0); 4Rn(t, 0)). Moreover, since s ¥ [0, T̂n), the tagged
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particle interacts with the ith particle for a time not bigger than 5(cv̂0)−1/2
and |vi(y)| [ v̂0/2. Then:

F
s

0
dy C

i
fm, Rn(t, y)i |F̂c(xi(y)− x̂(y)) vi(y)|

[
5c ||Nf̂||.
4

Wc(X(n)(0); m, 4Rn(t, 0))

[ CWc(X(n)(0); Rn(t, 0)) (A.12)

where in the last inequality we have used (A.10). Inserting (A.12) in (A.11)
we obtain a differential inequality which can be solved getting (for some
positive constants c1 and c2)

Wc(X (n)(s); Rn(t, s)) [ c1Wc(X (n)(0); Rn(t, 0))1
Rn(t, 0)
Rn(t, s)
2c2

Setting s=t and using that Rn(t, 0) [ 2Rn(t, t)=2Rn(t),

Wc(X(n)(t); Rn(t)) [ CWc(X (n)(0); Rn(t))

Then, from (2.5), (A.4), and (A.9) we conclude that, for any t ¥ [0, T̂n),

Qc(X(n)(t); m, Rn(t)) [ CWc(X (n)(0); Rn(t))

[ C sup
m

Qc(X (n)(0); m, 2Rn(t))

[ 4B3CQ1(X) Rn(t)

which proves (3.8). L
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